Home
Class 12
MATHS
(1+x)(dy)/(dx)=((1+x)^2+(y-3)), If y(2)=...

`(1+x)(dy)/(dx)=((1+x)^2+(y-3))`, If `y(2)=0` then `y(3)=?`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation given by \[ (1+x) \frac{dy}{dx} = (1+x)^2 + (y-3) \] with the initial condition \( y(2) = 0 \), we will follow these steps: ### Step 1: Rearranging the Equation First, we can rearrange the equation to isolate \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{(1+x)^2 + (y-3)}{1+x} \] ### Step 2: Simplifying the Right Side Now, we can simplify the right side: \[ \frac{dy}{dx} = (1+x) + \frac{y-3}{1+x} \] This gives us: \[ \frac{dy}{dx} = 1 + x + \frac{y-3}{1+x} \] ### Step 3: Writing in Standard Form Next, we can write this in the standard form of a linear first-order differential equation: \[ \frac{dy}{dx} - \frac{1}{1+x} y = 1 + x - \frac{3}{1+x} \] ### Step 4: Identifying \(p\) and \(q\) Here, we identify \(p\) and \(q\): - \(p = -\frac{1}{1+x}\) - \(q = 1 + x - \frac{3}{1+x}\) ### Step 5: Finding the Integrating Factor The integrating factor \(I\) is given by: \[ I = e^{\int p \, dx} = e^{\int -\frac{1}{1+x} \, dx} = e^{-\ln(1+x)} = \frac{1}{1+x} \] ### Step 6: Multiplying through by the Integrating Factor Now, we multiply the entire differential equation by the integrating factor: \[ \frac{1}{1+x} \frac{dy}{dx} - \frac{1}{(1+x)^2} y = \frac{1 + x - \frac{3}{1+x}}{1+x} \] This simplifies to: \[ \frac{d}{dx} \left( \frac{y}{1+x} \right) = \frac{1+x}{1+x} - \frac{3}{(1+x)^2} = 1 - \frac{3}{(1+x)^2} \] ### Step 7: Integrating Both Sides Now we integrate both sides: \[ \int \frac{d}{dx} \left( \frac{y}{1+x} \right) dx = \int \left( 1 - \frac{3}{(1+x)^2} \right) dx \] The left side gives: \[ \frac{y}{1+x} \] The right side integrates to: \[ x + \frac{3}{1+x} + C \] ### Step 8: Solving for \(y\) Thus, we have: \[ \frac{y}{1+x} = x + \frac{3}{1+x} + C \] Multiplying through by \(1+x\): \[ y = (1+x) \left( x + \frac{3}{1+x} + C \right) \] This simplifies to: \[ y = x(1+x) + 3 + C(1+x) \] ### Step 9: Applying Initial Condition Now we apply the initial condition \(y(2) = 0\): \[ 0 = 2(1+2) + 3 + C(1+2) \] This gives: \[ 0 = 6 + 3 + 3C \implies 3C = -9 \implies C = -3 \] ### Step 10: Final Equation for \(y\) Substituting \(C\) back into the equation for \(y\): \[ y = x(1+x) + 3 - 3(1+x) \] This simplifies to: \[ y = x^2 + x + 3 - 3 - 3x = x^2 - 2x \] ### Step 11: Finding \(y(3)\) Now we find \(y(3)\): \[ y(3) = 3^2 - 2 \cdot 3 = 9 - 6 = 3 \] Thus, the final answer is: \[ \boxed{3} \]

To solve the differential equation given by \[ (1+x) \frac{dy}{dx} = (1+x)^2 + (y-3) \] with the initial condition \( y(2) = 0 \), we will follow these steps: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

(dy)/(dx)=(x+y+1)/(2x+2y+3)

(y-x(dy)/(dx))=3(1-x^(2)(dy)/(dx))

Solve : (dy)/(dx)= (1)/(1+x^(2)), y(0)=3 .

If (dy)/(dx)=(2^(x+y)-2^(x))/(2^(y)),y(0)=1 then y(1) is equal to

(dy)/(dx)-2/(x+1) y=(x+1)^3

(dy)/(dx)+(1)/(2x)y=(x)/(y^(3))

(dy)/(dx)=(y^(3)-2x^(2)y)/(x^(3))

If for x ge 0, y = (x) is the solution of the differential equation, (x+1)dy=((x+1)^&2+y-3)dx,y(2)=0 , then y(3) is equal to ….

(dy)/(dx)=2e^(x)y^(3) , when x=0, y=(1)/(2)