Home
Class 12
MATHS
Find the coefficient of x^4 in (1 + x +...

Find the coefficient of `x^4` in `(1 + x + x^2)^10`

Text Solution

AI Generated Solution

The correct Answer is:
To find the coefficient of \( x^4 \) in the expansion of \( (1 + x + x^2)^{10} \), we can use the multinomial theorem. The general term in the expansion can be expressed as follows: ### Step 1: Identify the General Term The general term in the expansion of \( (a + b + c)^n \) is given by: \[ \frac{n!}{r_1! r_2! r_3!} a^{r_1} b^{r_2} c^{r_3} \] where \( r_1 + r_2 + r_3 = n \). In our case, let \( a = 1 \), \( b = x \), and \( c = x^2 \). Thus, the general term becomes: \[ \frac{10!}{r_1! r_2! r_3!} (1)^{r_1} (x)^{r_2} (x^2)^{r_3} = \frac{10!}{r_1! r_2! r_3!} x^{r_2 + 2r_3} \] ### Step 2: Set Up the Equations We need to find the coefficient of \( x^4 \). Therefore, we need: \[ r_2 + 2r_3 = 4 \] Additionally, since the total number of terms must equal 10, we have: \[ r_1 + r_2 + r_3 = 10 \] ### Step 3: Solve the Equations From the equations: 1. \( r_1 + r_2 + r_3 = 10 \) 2. \( r_2 + 2r_3 = 4 \) We can express \( r_1 \) in terms of \( r_2 \) and \( r_3 \): \[ r_1 = 10 - r_2 - r_3 \] Now, substituting \( r_2 = 4 - 2r_3 \) into the equation for \( r_1 \): \[ r_1 = 10 - (4 - 2r_3) - r_3 = 6 + r_3 \] ### Step 4: Find Possible Values for \( r_3 \) Since \( r_1, r_2, r_3 \) must be non-negative integers, we can analyze the possible values for \( r_3 \): 1. If \( r_3 = 0 \): - \( r_2 = 4 \) - \( r_1 = 6 \) 2. If \( r_3 = 1 \): - \( r_2 = 2 \) - \( r_1 = 7 \) 3. If \( r_3 = 2 \): - \( r_2 = 0 \) - \( r_1 = 8 \) ### Step 5: Calculate the Coefficient for Each Case Now we calculate the coefficient for each case: 1. **Case 1**: \( (r_1, r_2, r_3) = (6, 4, 0) \) \[ \text{Coefficient} = \frac{10!}{6!4!0!} = \frac{3628800}{720 \cdot 24} = 210 \] 2. **Case 2**: \( (r_1, r_2, r_3) = (7, 2, 1) \) \[ \text{Coefficient} = \frac{10!}{7!2!1!} = \frac{3628800}{5040 \cdot 2 \cdot 1} = 360 \] 3. **Case 3**: \( (r_1, r_2, r_3) = (8, 0, 2) \) \[ \text{Coefficient} = \frac{10!}{8!0!2!} = \frac{3628800}{40320 \cdot 2} = 45 \] ### Step 6: Sum the Coefficients Finally, we sum the coefficients from all cases: \[ 210 + 360 + 45 = 615 \] ### Final Answer Thus, the coefficient of \( x^4 \) in \( (1 + x + x^2)^{10} \) is **615**. ---

To find the coefficient of \( x^4 \) in the expansion of \( (1 + x + x^2)^{10} \), we can use the multinomial theorem. The general term in the expansion can be expressed as follows: ### Step 1: Identify the General Term The general term in the expansion of \( (a + b + c)^n \) is given by: \[ \frac{n!}{r_1! r_2! r_3!} a^{r_1} b^{r_2} c^{r_3} \] where \( r_1 + r_2 + r_3 = n \). ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the coefficients of x^(4) in (1 - x)^(2) (2 + x)^(5) using binomial theorem.

Find the coefficient of x^(-2) in (1+x^(2)+x^(4)) (1-1/(x^(2)))^(18)

Find the coefficient of x^-1 in (1+3 x^2+x^4) (1+1/x)^8

Find the coefficient of x^-1 in (1+3x^2+x^4)(1+ 1/x)^8

Find the coefficient of x^(5) in (1+2x+3x^(2).........

Findthe coefficient of x^2 in (x+1/x)^10.(1-x+2x^2)

Find the coefficient of x^(n) in (1+(x)/(1!)+(x^(2))/(2!)+...+(x^(n))/(n!))^(2)

Find the coefficient of x^(k) in 1+(1+x)+(1+x)^(2)+...+(1+x)^(n)(0<=k<=n)

Find the coefficients of x^4 in the expansion of (1+x+x^2)^3