Home
Class 12
MATHS
cos^(-1)(2x)+2cos^(-1)sqrt(1-4x^(2))...

cos^(-1)(2x)+2cos^(-1)sqrt(1-4x^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

Find dy/dx when y = cos^-1 (2x) + 2 cos^-1 sqrt(1-4x^2)

If 1/(sqrt(2))

3cos^(-1)x=sin^(-1)(sqrt(1-x^(2))(4x^(2)-1))

prove that cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))=2cos^(-1)sqrt((1+x)/(2))

cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))=2cos^(-1)sqrt((1+x)/(2))

Statement -1: if -1lexle1 then sin^(-1)(-x)=-sin^(-1)x and cos^(-1)(-x)=pi-cos^(-1)x Statement-2: If -1lexlex then cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))= 2cos^(-1)sqrt((1+x)/(2))

Statement -1: if -1lexle1 then sin^(-1)(-x)=-sin^(-1)x and cos^(-1)(-x)=pi-cos^(-1)x Statement-2: If -1lexlex then cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))= 2cos^(-1)sqrt((1+x)/(2))

cos^(-1)x= 2 sin ^(-1) sqrt((1-x)/(2))=2 cos ^(-1)""sqrt((1+x)/(2))=2tan^(-1)""(sqrt(1-x^(2)))/(1+x)

cos^(-1){1/2x^(2)+sqrt(1-x^(2))sqrt(1-(x^(2))/(4))}=cos^(-1)((x)/(2))-cos^(-1)x holds for what values of x?

cos^(-1)((x^(2))/(6)+sqrt(1-(x^(2))/(9))sqrt(1-(x^(2))/(4)))=cos^(-1)((x)/(3))-cos^(-1)((x)/(2)) hold for all x belonging to