Home
Class 12
MATHS
Verify that the function y=c1e^(ax)cos(b...

Verify that the function `y=c_1e^(ax)cos(bx)+c_2e^(ax)sin(bx)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Verify that the function y=c_(1)e^(ax)cos bx+c_(2)e^(ax)sin bx, where c_(1),c_(2) are arbitrary constants is a solution of the differential equation.(d^(2)y)/(dx^(2))-2a(dy)/(dx)+(a^(2)+b^(2))y=0

Verify that the function y = c_1 e^(ax) cosbx + c_2 e^(ax) sin bx ,where c_1, c_2 are arbitrary constants is a solution of the differential equation ((d^2y)/(dx^2)) - 2a ((dy)/(dx)) + (a^2 + b^2)y = 0

Verify that the function y=C_(1)e^(x)cos bx+C_(2)e^(ax)sin bx,C_(1),C_(2) are arbitrary constants is a solution of the differential equation: (d^(2)y)/(dx)-2a(dy)/(dx)+(a^(2)+b^(2))y=0

Verify that the function y = c_(1) e^(ax) cos bx + c_(2)e^(ax) sin bx , where c_(1),c_(2) are arbitrary constants is a solution of the differential equation (d^(2)y)/(dx^(2)) - 2a(dy)/(dx) + (a^(2) + b^(2))y = 0

Verify that the function y = c_(1) e^(ax) cos bx + c_(2)e^(ax) sin bx , where c_(1),c_(2) are arbitrary constants is a solution of the differential equation (d^(2)y)/(dx^(2)) - 2a(dy)/(dx) + (a^(2) + b^(2))y = 0

Verify that the function y=C_(1)e^(ax)cos bx+C2ax sin bx,C_(1),C_(2), are arbitrary constants is a solution of the differentia equation (d^(2)y)/(dx^(2))-2a(dy)/(dx)+(a^(2)+b^(2))y=0

e^(ax).sin^-1bx

e^(ax).sin^-1bx