Home
Class 10
MATHS
" UT get anfrots: "((x-1)/(x+1))^(4)-13(...

" UT get anfrots: "((x-1)/(x+1))^(4)-13((x-1)/(x+1))^(2)+36=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve ((x-1)/(x+ 1))^(4) - 13 ((x - 1)/(x + 1))^(2) + 36 =0

Solve the equation ((x-1)/(x+1))^4-13((x-1)/(x+1))^2+36=0

The number of real roots of ((x - 1)/( x + 1))^(4) - 13 ((x - 1)/( x + 1))^(2) + 36 = 0, x ne - 1 is

If: tan^(-1)((x-1)/(x+1))+ tan^(-1)((2x-1)/(2x+1)) = tan^(-1) (23/36) . Then: x=

The root of the equation tan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36)) is

Solve: tan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36))

Find the value of xtan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36))

Solve: tan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36))