Home
Class 12
MATHS
If (dy)/dx = (xy)/(x^2 + y^2), y(1) = 1...

If `(dy)/dx = (xy)/(x^2 + y^2), y(1) = 1` and `y(x) = e` then `x =`

A

`(sqrt3/2)e`

B

`sqrt3e`

C

`sqrt2e`

D

`e/sqrt2`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

dy/dx=(2xy)/(x^2-1-2y)

(dy)/(dx)=(x^2y+y)/(xy^2+x)

(dy)/(dx) = (2xy)/(x^(2)-1-2y)

(dy)/(dx)=(y^(2)-x)/(xy+y)

If K is constant such that xy + k = e ^(((x-1)^2)/(2)) satisfies the differential equation x . ( dy )/( dx) = (( x^2 - x-1) y+ (x-1) and y (1) =0 then find the value of K .

If x^(3) dy + xy dx = x^(2) dy + 2y dx , y (2) = e and x gt 1 , then y(4) is equal to .

If y(x) is a solution of (dy)/(dx)-(xy)/(1+x)=(1)/(1+x) and y(0)=-1 , then the value of y(2) is

If y satisfies (dy)/(dx)=(e^(y))/(x^(2))-(1)/(x) and y(1)=0 then the value of e^(y(2)) is