Home
Class 12
MATHS
Let x = 2sintheta - sin2theta and y = 2...

Let `x = 2sintheta - sin2theta` and `y = 2costheta - cos2theta` find `(d^2 y)/(dx^2)` at `theta= pi`

A

`3/8`

B

`3/2`

C

`5/8`

D

`7/8`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If x= 2 sintheta - sin2theta and y= 2 costheta - cos 2theta then (d^2y)/(dx^2) " at " theta =pi is :

if x =2 cos theta - cos 2 theta y = 2 sin theta - sin 2 theta Find (d^(2)y)/(dx^(2)) at theta = pi/2

If x=a (theta-sin theta) and y=a(1-cos theta) , find (d^(2)y)/(dx^(2)) at theta=pi.

If x=2sin theta-sin2 theta and y=2cos theta-cos2 theta , theta in[0,2 pi], then (d^(2)y)/(dx^(2)) at theta=pi is

If x=a(cos 2 theta+2 theta sin 2 theta) " and" y=a(sin 2 theta - 2 theta cos 2 theta) , find (d^(2)y)/(dx^(2)) " at" theta =(pi)/(8) .

If x=a cos^(2)theta,y=b sin^(2)theta find (d^2y)/dx^2

If x=2 cos theta- cos 2 theta and y=2 sin theta - sin 2 theta, then (dy)/(dx) =

If x=a(2 theta-sin2 theta) and y=a(1-cos2 theta) find (dy)/(dx) when theta=(pi)/(3)

"If "x=(2costheta-cos 2theta)and y=(2sin theta-sin 2theta)," find "((d^(2))/(dx^(2)))_(theta=(pi)/(2))

If x=sin theta-theta cos theta , y=cos theta+theta sin theta then (d^(2)y)/dx ^2=