Home
Class 12
MATHS
Let x= sum(n=0)^oo (-1)^n (tantheta)^(2n...

Let `x= sum_(n=0)^oo (-1)^n (tantheta)^(2n)` and ` y = sum_(n=0)^oo (costheta)^(2n)` qhere `theta in (0,pi/4)`, then

A

x(y+1)=1

B

y(1-x) = 1

C

y(x-1)=1

D

y(1+x) = 1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the sums \( x \) and \( y \) given by: \[ x = \sum_{n=0}^{\infty} (-1)^n (\tan \theta)^{2n} \] \[ y = \sum_{n=0}^{\infty} (\cos \theta)^{2n} \] where \( \theta \in (0, \frac{\pi}{4}) \). ### Step 1: Evaluate \( x \) The series for \( x \) is an alternating geometric series. The general form of an alternating geometric series is: \[ \sum_{n=0}^{\infty} (-1)^n a^n = \frac{1}{1 + a} \quad \text{for } |a| < 1 \] In our case, \( a = \tan^2 \theta \). Since \( \theta \in (0, \frac{\pi}{4}) \), we have \( \tan \theta < 1 \), thus \( \tan^2 \theta < 1 \). Using the formula for the sum of the series, we get: \[ x = \frac{1}{1 + \tan^2 \theta} \] ### Step 2: Simplify \( x \) Using the trigonometric identity \( 1 + \tan^2 \theta = \sec^2 \theta \), we can rewrite \( x \): \[ x = \frac{1}{\sec^2 \theta} = \cos^2 \theta \] ### Step 3: Evaluate \( y \) The series for \( y \) is a standard geometric series: \[ y = \sum_{n=0}^{\infty} (\cos \theta)^{2n} \] The sum of a geometric series is given by: \[ \sum_{n=0}^{\infty} r^n = \frac{1}{1 - r} \quad \text{for } |r| < 1 \] Here, \( r = \cos^2 \theta \), and since \( \theta \in (0, \frac{\pi}{4}) \), we have \( \cos \theta < 1 \) and thus \( \cos^2 \theta < 1 \). Therefore: \[ y = \frac{1}{1 - \cos^2 \theta} \] ### Step 4: Simplify \( y \) Using the identity \( 1 - \cos^2 \theta = \sin^2 \theta \), we can rewrite \( y \): \[ y = \frac{1}{\sin^2 \theta} \] ### Step 5: Find \( x + \frac{1}{y} \) Now we need to compute \( x + \frac{1}{y} \): \[ \frac{1}{y} = \sin^2 \theta \] Thus, \[ x + \frac{1}{y} = \cos^2 \theta + \sin^2 \theta \] Using the Pythagorean identity: \[ \cos^2 \theta + \sin^2 \theta = 1 \] ### Conclusion We have found that: \[ x + \frac{1}{y} = 1 \] This leads us to the final result: \[ xy + 1 = y \implies y(1 - x) = 1 \] Thus, the answer is: \[ \boxed{1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x Sigma_(n=0)^(oo) (-1)^n " tan "^(2n) " and " y = Sigma_(n=0)^(oo) " cos "^(2n) theta for 0 lt theta lt pi/4 , then :

If 0 lt theta, phi lt (pi)/(2), x = sum_(n=0)^(oo)cos^(2n)theta, y=sum_(n=0)^(oo)sin^(2n)phi and z=sum_(n=0)^(oo)cos^(2n)theta*sin^(2n)phi then :

sum_ (n = 0) ^ (oo) (- 1) ^ (n) x ^ (n + 1) =

If 0

If x= sum_(n=0)^oo (Costheta)^(2n) , y= sum_(n=0)^oo (Sinphi)^(2n) , z= sum_(n=0)^oo (Cosphi)^(2n). (Sintheta)^(2n) Then which of the following is true ??

If x=sum_(n=0)^(oo) a^(n),y=sum_(n=0)^(oo)b^(n),z=sum_(n=0)^(oo)(ab)^(n) , where a,blt1 , then

sum_ (n = 0)^(oo) ((2i)/(3))^(n) =