Home
Class 12
MATHS
If minimum value of term free from x for...

If minimum value of term free from `x` for `(x/(sintheta) + 1/(xcostheta))^(16)` is `L_1` in `[pi/8,pi/4]` and `L_2` in `[pi/16,pi/8]`, then `L_2/L_1`

Text Solution

Verified by Experts

The correct Answer is:
16
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the minimum value of the function f(x) = (pi^(2))/(16 cot^(-1) (-x)) - cot^(-1) x

Minimum value of the expression (1)/(cos^(2)((pi)/(4)+x)+sin^(2)((pi)/(4)-x))

If L = sin^2 ((pi)/(16)) - sin^2 ( pi/8) and M = cos^2 ( (pi)/(16)) - sin^2 (pi/8), then :

Find the minimum value of f(x)=pi^2/(16 cot^-1 (-x)) - cot^-1 x

The value of lim _(x to pi/4) (pi/4 int_2^(sec^2x)f(x)dx)/(x^2-pi^2/16) is

For pi/2

The value of the expression 1+"cosec"(pi)/(4)+"cosec"(pi)/(8)+"cosec"(pi)/(16) is equal to

In the expansion of ((x)/(costheta)+(1)/(xsintheta))^(16) , if l_(1) is the least value of the term independent of x when (pi)/(8) le theta le (pi)/(4) and l_(2) is the least value of the term independent of x when (pi)/(16) le theta le (pi)/(8) , then the value of (l_(2))/(l_(1)) is

The value of l = int _(-pi//2)^(pi//2) | sin x | dx is

If the middle term of (x+(1)/(x)sin^(-1)x)^(8) is 35(pi^(4))/(8) then value of x is