Home
Class 10
MATHS
[" Question numbers "23" to "30" carry "...

[" Question numbers "23" to "30" carry "4" marks each."],[[" 23.Prove that "(tan^(2)A)/(tan^(2)A-1)-(cos ec^(2)A)/(sec^(2)A-csc^(2)A),=(1)/(1-2cos^(2)A)],[" 24.The first term of an "AP" is "3" ,the last term in "9.]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan^(2)A/(tan^2A-1)+cosec^(2)A/(sec^2A-cosec^2A)=(1)/(1-2cos^(2)A)

Prove that sec^(2)(tan^(-1)2)+cos ec^(2)(cot^(-1)3)=15

sec^(2)(tan^(-1)4)+cosec^(2)(cot^(-1)3) =

sec^(2)(tan^(-1)2) +"cosec"^(2)(cot^(-1)3)=

sec^(2)(tan^(-1)2) +"cosec"^(2)(cot^(-1)3)=

Prove that: tan^(-1)((1)/(4))+tan^(-1)((2)/(9))=(1)/(2)cos^(-1)((3)/(5))

Prove that (sin^(2)30^(@)+cos^(2)30^(@))/(sec^(2)57^(@)-tan^(2)57^(@))=1

sec^(2)(tan^(-1)2) + "cosec"^(2)(cot^(-1)3)=

Prove the Identity (tan^(2)theta)/(tan^(2)theta-1)+(cosec^(2)theta)/(sec^(2)theta-cosec^(2)theta)=(1)/(sin^(2)theta-cos^(2)theta)

Prove that tan^(-1)""(2)/(11)+tan^(-1)""(7)/(24)=(1)/(2)cos^(-1)""(3)/(5)