Home
Class 14
MATHS
1+(1+2)/(2)+(1+2+3)/(3)+(1+2+3+4)/(4)+...

1+(1+2)/(2)+(1+2+3)/(3)+(1+2+3+4)/(4)+

Promotional Banner

Similar Questions

Explore conceptually related problems

The sum of the infinite series (1)/(2) ((1)/(3) + (1)/(4)) - (1)/(4)((1)/(3^(2)) + (1)/(4^(2))) + (1)/(6) ((1)/(3^(3)) + (1)/(4^(3))) - ...is equal to

(1)/(4)" " (1)/(2) " "(3)/(4)" "1" "1(1)/(4)" "1(1)/(2)" "1(3)/(4) ?

If 1^(2)+(2^(2))/(2!)+(3^(2))/(3!)+(4^(2))/(4!)+....=ae,(1^(2).2)/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+...=be,(1)/(2!)+(1+2)/(3!)+(1+2+3)/(4!)+...=ce then the descending order of a,b,c is

The sum of the series 1 + (1)/(3^(2)) + (1 *4)/(1*2) (1)/(3^(4))+( 1 * 4 * 7)/(1 *2*3)(1)/(3^(6)) + ..., is (a) ((3)/(2))^((1)/(3)) (b) ((5)/(4))^((1)/(3)) (c) ((3)/(2))^((1)/(6)) (d) None of these

Value of y = 1 - 1/2 + 1/4 - 1/8 --------- ∞ (1) 2/3 ( 2 ) 2 ( 3 ) 1/2 ( 4 ) 3/2