Home
Class 10
MATHS
(1^3+2^3+...+n^3)/(1+3+5+...+(2n-1))=(n+...

`(1^3+2^3+...+n^3)/(1+3+5+...+(2n-1))=(n+1)^2/4`

Promotional Banner

Similar Questions

Explore conceptually related problems

The sum of the series 1+4+3+6+5+8+ upto n term when n is an even number (n^2+n)/4 2. (n^2+3n)/2 3. (n^2+1)/4 4. (n(n-1))/4 (n^2+3n)/4

Find lim_(n rarr oo)((1.3.5...(2n-1)}(n+1)^(4)]+[n^(4)(1.3.5...(2n-1)) (2n+1)]

Using the principle of mathematical induction, prove that 1.3 + 2.3^(2) + 3.3^(2) + ... + n.3^(n) = ((2n-1)(3)^(n+1)+3)/(4) for all n in N .

Using the principle of mathematical induction, prove that 1.3 + 2.3^(2) + 3.3^(2) + ... + n.3^(n) = ((2n-1)(3)^(n+1)+3)/(4) for all n in N .

Prove that by using the principle of mathematical induction for all n in N : 1.3+ 2.3^(2)+ 3.3.^(3)+ ....+ n.3^(n)= ((2n-1)3^(n+1)+3)/(4)

Prove that by using the principle of mathematical induction for all n in N : 1.3+ 2.3^(2)+ 3.3.^(3)+ ....+ n.3^(n)= ((2n-1)3^(n+1)+3)/(4)

Show that : (^(4n)C_(2n))/(^(2n)C_n) = (1.3.5...(4n-1))/{1.3.5...(2n-1)}^2

Prove that ((4n)C_(2n))/((2n)C_(n))=(1.3.5...(4n-1))/([1.3.5...(2n-1)]^(2))

"Prove that "(""^(4n)C_(2n))/(""^(2n)C_(n))=(1.3,5......(4n-1))/({1.3.5....(2n-1)}^(2))