Home
Class 11
MATHS
[" Using Principle of Mathematical Induc...

[" Using Principle of Mathematical Induction,prove that "],[qquad (1)/(3.5)+(1)/(5.7)+(1)/(7.9)+...+(1)/((2n+1)(2n+3))=(n)/(3(2n+3)),AA n in N]

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that by using the principle of mathematical induction for all n in N : (1)/(3.5)+ (1)/(5.7)+ (1)/(7.9)+ ....+(1)/((2n+1)(2n+3))= (n)/(3(2n+3))

Prove that by using the principle of mathematical induction for all n in N : (1)/(3.5)+ (1)/(5.7)+ (1)/(7.9)+ ....+(1)/((2n+1)(2n+3))= (n)/(3(2n+3))

Prove that by using the principle of mathematical induction for all n in N : (1)/(3.5)+ (1)/(5.7)+ (1)/(7.9)+ ....+(1)/((2n+1)(2n+3))= (n)/(3(2n+3))

Prove the following by using the principle of mathematical induction for all n in Nvdots(1)/(3.5)+(1)/(5.7)+(1)/(7.9)+...+(1)/((2n+1)(2n+3))=(n)/(3(2n+3))

Prove the following by the principle of mathematical induction: (1)/(3.5)+(1)/(5.7)+(1)/(7.9)+(1)/((2n+1)(2n+3))=(n)/(3(2n+3))

Prove the following by using the principle of mathematical induction for all n in N (1)/(3.5) + (1)/(5.7) + (1)/(7.9)+……+(1)/((2n+1)(2n+3)) = (n)/(3(2n+3))

Using mathematical induction prove that 1/(3.5)+1/(5.7)+1/(7.9)+.......+1/((2n+1)(2n+3))=n/(3(2n+3) for all n in N

Using principle of mathematical induction, prove that: 1+3+5+………..+(2n-1)= n^2 .

By using the principle of mathematical induction , prove the follwing : (1)/(1.4) + (1)/(4.7) + (1)/(7.10) + ………..+ (1)/((3n - 2)(3n+1)) = (n)/(3n + 1) , n in N

Prove the following by using the principle of mathematical induction for all n in N : 1/(3. 5)+1/(5. 7)+1/(7. 9)+...+1/((2n+1)(2n+3))=n/(3(2n+3)) .