Home
Class 12
MATHS
y=(sqrt((a+x))-sqrt(a-x))/(sqrt(a+x)+sqr...

y=(sqrt((a+x))-sqrt(a-x))/(sqrt(a+x)+sqrt(a-x))

Promotional Banner

Similar Questions

Explore conceptually related problems

(sqrt(a+x)+sqrt(a-x))/(sqrt(a+x)-sqrt(a-x))=b

(sqrt(a+x)-sqrt(a-x))/(sqrt(a+x)+sqrt(a-x))=(x)/(a)

If e^(y)=(sqrt(1+x)+sqrt(1-x))/(sqrt(1+x)-sqrt(1-x))," then "(dy)/(dx)=

If y=tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))), find (dy)/(dx)

y = tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))),find dy/dx.

If y=tan^(-1){(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))}, find (dy)/(dx)

If y = tan^(-1) ((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))) then dy/dx =

If y=tan^(-1)[(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))] then prove that (dy)/(dx)=(1)/(2sqrt(1-x^(2)))

If y="cot"^(-1) (sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)) , show that [(dy)/(dx)]_(x=(1)/(2))= -(1)/(sqrt(3)) .