Home
Class 12
MATHS
0-6int(0)^(1)(log x)/(sqrt(1-x^(2)))dx=-...

0-6int_(0)^(1)(log x)/(sqrt(1-x^(2)))dx=-(pi)/(2)log2

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)(logx)/(sqrt(1-x^(2)))dx=-(pi)/(2)(log2)

Prove that : int_(0)^(1) (log x)/(sqrt(1-x^(2)))dx=-(pi)/(2)log 2

int_(0)^(1)(x^(2)ln x)/(sqrt(1-x^(2)))dx

int_(0)^(1)(log(1+x))/(1+x^(2))dx

int_(0)^(1)(log|1+x|)/(1+x^(2))dx=(pi)/(8)log2

If int_(0)^(1) (log(1+x)/(1+x^(2))dx=

Prove that int_(0)^(1) log(sqrt(1-x)+sqrt(1+x))dx = (1)/(2) log 2 + (pi)/(4) - (1)/(2)

Prove that ln 2 lt int_(0)^(1)(dx)/(sqrt(1+x^(4))) lt (pi)/2)

Prove that ln 2 lt int_(0)^(1)(dx)/(sqrt(1+x^(4))) lt (pi)/2)