Home
Class 10
MATHS
x^(3)-4x^(2)-x+1=(x-2)^(3)...

x^(3)-4x^(2)-x+1=(x-2)^(3)

Promotional Banner

Similar Questions

Explore conceptually related problems

Let the root of equation (3x^(3)-x^(2)+x-1)/(3x^(3)-x^(2)-x+1)=(4x^(3)+7x^(2)+x+1)/(4x^(3)+7x^(2)-x-1) be x_(1),x_(2),x_(3) then the value of x_(1)+x_(2)+x_(3) is

Check whether the following are quadratic equations : (1) (x-3)^(2)=x(2x-5) (2) (2x-3)(8x+1) = (4x+5)(4x-5) (3) (5x+3)(x-2)=(4x+3)(2x-1) (4) (2x+5)^(3)=8(x-1)^(3) (5) x^(2)+7x-8=x(x+5) (6) x^(3)+9x^(2)-7x+2=(x+3)^(3)

Identify polynomials in the following: f(x)=4x^(3)-x^(2)-3x+7g(x)=2x^(3)-3x^(2)+sqrt(x)-1p(x)=(2)/(3)x^(2)-(7)/(4)x+9q(x)=2x^(2)-3x+(4)/(x)+2h(x)=x^(4)-x^((2)/(3))+x-1f(x)=2+(3)/(x)+4x

Add the following expressions: 3x^(3)+2x^(2)-6x+3, 2x^(3)-3x^(2)-x-4, 1+2x-3x^(2)-4x^(3)

Simplify: (x^(3)-2x^(2)+3x-4)(x-1)-(2x-3)(x^(2)-x+1)

Simplify: 4x^(3)-2x^(2)+5x-1+8x+x^(2)-6x^(3)+7-6x+3-3x^(2)-x^(3)

I=int_(0)^(2)(3x^(2)-3x+1)cos(x^(3)-3x^(2)+4x-2)dx

Divide p(x) by g(x) in each of the following questions and find the quotient q(x) and remainder r(x) : p(x)=x^(4)+6x^(3)-4x^(2)+2x+1, " " g(x)=x^(2)+3x-1

Divide p(x) by g(x) in each of the following questions and find the quotient q(x) and remainder r(x) : p(x)=x^(4)+6x^(3)-4x^(2)+2x+1, " " g(x)=x^(2)+3x-1

If x^(2)+3x+1=0 then find x^(3)+(1)/(x^(3)),x^(4)+(1)/(x^(4)),x^(2)-(1)/(x^(2)),x^(2)+(1)/(x^(2))