Home
Class 12
MATHS
[x,y" be real variable satisfying the "x...

[x,y" be real variable satisfying the "x^(2)+y^(2)+8x-10y-40=0" .Let "a=" max "],[(+2)^(2)+(y-3)^(2)" ) and "b=min(sqrt((x+2)^(2))+(y-3)^(2))," then: "],[[a+b=18," (b) "a+b=4sqrt(2)],[" I "-b=4sqrt(2)," (d) "ab=73]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let x, y be real variable satisfying the x^2 + y^2 + 8x - 10 y - 40 = 0 Let a = max{(x + 2)^2 + (y - 3)^2} and b = min{(x + 2)^2 + (y - 3)^2} , then

Let x and y be real variables satisfying x^(2)+y^(2)+8x-10y-40=0. Let a=max{sqrt((x+2)^(2)+(y-3)^(2))} and b=min{sqrt((x+2)^(2)+(y-3)^(2))}. Then a+b=18( b) a+b=sqrt(2)a-b=4sqrt(2)( d) a*b=73

Let xa n dy be real variables satisfying x^2+y^2+8x-10 y-40=0 . Let a=max{sqrt((x+2)^2+(y-3)^2)} and b=min{sqrt((x+2)^2+(y-3)^2)} . Then

Let xa n dy be real variables satisfying x^2+y^2+8x-10 y-40=0 . Let a=max{sqrt((x+2)^2+(y-3)^2)} and b=min{sqrt((x+2)^2+(y-3)^2)} . Then

Let x, y be real variable satisfying x^(2) + y^(2) + 8x - 10y - 59 = 0 Let a = max {(x-3)^(2) + (y-4)^(2) and b = min {(x-3)^(2) + (y-4)^(2)) , then a + b + 2010 is ______ .

Let x, y be real variable satisfying x^(2) + y^(2) + 8x - 10y - 59 = 0 Let a = max {(x-3)^(2) + (y-4)^(2) and b = min {(x-3)^(2) + (y-4)^(2)) , then a + b + 2010 is ______ .

Let xa n dy be real variables satisfying x^2+y^2+8x-10 y-40=0 . Let a=max{sqrt((x+2)^2+(y-3)^2)} and b=min{sqrt((x+2)^2+(y-3)^2)} . Then (a) a+b=18 (b) a+b=sqrt(2) (c) a-b=4sqrt(2) (d) adotb=73

Let xa n dy be real variables satisfying x^2+y^2+8x-10 y-40=0 . Let a=max{sqrt((x+2)^2+(y-3)^2)} and b=min{sqrt((x+2)^2+(y-3)^2)} . Then (a) a+b=18 (b) a+b=sqrt(2) (c) a-b=4sqrt(2) (d) adotb=73

Find the real points (x,y) satisfying 3x^(2)-3y^(2)-4xy+10x-10y+10=0

If a="max"{(x+2)^(2)+(y-3)^(2)} and b="min"{(x+2)^(2)+(y-3)^(2)} where x, y satisfying x^(2)+y^(2)+8x-10y-40=0 then :