Home
Class 11
MATHS
[x^(2)+y^(2)=36,,y in[0,6]],[x^(2)+y^(2)...

[x^(2)+y^(2)=36,,y in[0,6]],[x^(2)+y^(2)=36,,x in[-6,6]]

Promotional Banner

Similar Questions

Explore conceptually related problems

The circles x^(2)+y^(2)-6x-8y=0 and x^(2)+y^(2)-6x+8=0 are

The circles x^(2)+y^(2)+6x+6y=0 and x^(2)+y^(2)-12x-12y=0

Find the equation to the common chord of the two circles x^(2) + y^(2) - 4x + 6y - 36 = 0 and x^(2) + y^(2) - 5x + 8y - 43 = 0 .

The two circles x^(2) + y^(2) -2x + 6y + 6 = 0 and x^(2) + y^(2) -5x + 6y + 15 = 0

The minimum radius of the circle which contains the three circles, x^(2)+y^(2)-4y-5=0,x^(2)+y^(2)+12x+4y+31=0 and x^(2)+y^(2)+6x+12y+36=0 is

The minimum radius of the circle which contains the three circles, x^(2)+y^(2)-4y-5=0,x^(2)+y^(2)+12x+4y+31=0 and x^(2)+y^(2)+6x+12y+36=0 is

Find the number of possible common tangents of following pairs of circles (i) x^(2)+y^(2)-14x+6y+33=0 x^(2)+y^(2)+30x-2y+1=0 (ii) x^(2)+y^(2)+6x+6y+14=0 x^(2)+y^(2)-2x-4y-4=0 (iii) x^(2)+y^(2)-4x-2y+1=0 x^(2)+y^(2)-6x-4y+4=0 (iv) x^(2)+y^(2)-4x+2y-4=0 x^(2)+y^(2)+2x-6y+6=0 (v) x^(2)+y^(2)+4x-6y-3=0 x^(2)+y^(2)+4x-2y+4=0

Find the number of possible common tangents of following pairs of circles (i) x^(2)+y^(2)-14x+6y+33=0 x^(2)+y^(2)+30x-2y+1=0 (ii) x^(2)+y^(2)+6x+6y+14=0 x^(2)+y^(2)-2x-4y-4=0 (iii) x^(2)+y^(2)-4x-2y+1=0 x^(2)+y^(2)-6x-4y+4=0 (iv) x^(2)+y^(2)-4x+2y-4=0 x^(2)+y^(2)+2x-6y+6=0 (v) x^(2)+y^(2)+4x-6y-3=0 x^(2)+y^(2)+4x-2y+4=0

Which of the following is/are true ? The circles x^(2)+y^(2)-6x+6y+9=0 and x^(2)+y^(2)+6x+6y+9=0 are such that :