Home
Class 14
MATHS
" 11."quad " aft "(a+b)/(c)=(b+c)/(a)=(c...

" 11."quad " aft "(a+b)/(c)=(b+c)/(a)=(c+a)/(b)=Kquad " at "K" und "B

Promotional Banner

Similar Questions

Explore conceptually related problems

If (a+b)/(c)=(b+c)/(a)=(c+a)/(b)=k, then k is equal to 0 b.1 c.2 d.a+b+c

If (a)/(b+c)=(b)/(c+a)=(c)/(a+b)=K, then the value of K is +-(1)/(2)(b)(1)/(2) or -1(c)-1(d)(1)/(2)

Let a,b,c be distinct complex numbers such that (a)/(1-b)=(b)/(1-c)=(c)/(1-a)=k. Find the value of k.

If a, b, c are three distinct positive real numbers such that (b+c)/(a)+(c+a)/(b)+(a+b)/( c )gt k, then the grealtest value of k, is

If a, b, c are three distinct positive real numbers such that (b+c)/(a)+(c+a)/(b)+(a+b)/( c )gt k, then the grealtest value of k, is

If (a^(2)+c^(2))/(a+c)=(b^(2)+c^(2))/(b+c)=k then value of k could be

The value of the determinant |k a k^2+a^2 1k b k^2+b^2 1k c k^2+c^2 1| is k(a+b)(b+c)(c+a) k a b c(a^2+b^(f2)+c^2) k(a-b)(b-c)(c-a) k(a+b-c)(b+c-a)(c+a-b)

The value of the determinant |k a k^2+a^2 1k b k^2+b^2 1k c k^2+c^2 1| is k(a+b)(b+c)(c+a) k a b c(a^2+b^(f2)+c^2) k(a-b)(b-c)(c-a) k(a+b-c)(b+c-a)(c+a-b)