Home
Class 12
MATHS
tan^(-1)(1)/(5)+tan^(-1)(1)/(7)+tan^(-1)...

tan^(-1)(1)/(5)+tan^(-1)(1)/(7)+tan^(-1)*(1)/(3)+tan^(-1)(1)/(8)=(pi)/(4)

Promotional Banner

Similar Questions

Explore conceptually related problems

tan ^(-1) ""(1)/(3) + tan^(-1)""(1)/(7)+tan ^(-1)""(1)/(5)+tan ^(-1)""(1)/(8)=(pi)/(4)

tan^(-1) (1/5) + tan^(-1) (1/7) + tan^(-1) (1/3) + tan^(-1) (1/8) = π/4

2tan^(-1)((1)/(5))+tan^(-1)((1)/(7))+2tan^(-1)((1)/(8))=

tan^(-1)((4)/(7))-tan^(-1)((1)/(5))=tan^(-1)((1)/(3))

Prove that tan^ (-1)( 1/3) +tan^(-1)( 1/5) + tan^(-1) (1/7 )+tan^(-1) (1/8) = pi/4

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

Prove the following: 4tan^(-1)(1)/(5)-tan^(-1)(1)/(70)+tan^(-1)(1)/(99)=(pi)/(4)2tan^(-1)(1)/(5)+sec^(-1)(5sqrt(2))/(7)+2tan^(-1)(1)/(8)=(pi)/(4)

2tan^(-1)((1)/(5))+tan^(-1)((1)/(8))= tan^(-1)((4)/(7))

Prove that 2 tan^(-1) ((1)/(8)) + tan^(-1) ((1)/(7)) + 2 tan^(-1) ((1)/(5)) = (pi)/(4)