Home
Class 12
MATHS
lim(n rarr oo)(1^(3)+2^(3)+...+n^(3))/((...

lim_(n rarr oo)(1^(3)+2^(3)+...+n^(3))/((n-1)^(4))

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)(n^(2)(1^(3)+2^(3)+...+n^(3)))/((1^(2)+2^(2)+......+n^(2))^(2))

Let a = lim_(n rarr oo) (1+2+3+.....+n)/(n^(2))= , b = lim_(n rarr oo) (1^(2)+2^(2)+.....+n^(2))/(n^(3))= then

lim_(n rarr oo) (1^(2)+2^(2)+....+n^(2))/(2n^(3)+3n^(2)+4n+1 ) =

lim_(n rarr oo)(1+2^(4)+3^(4)+...+n^(4))/(n^(5))

lim_(n rarr oo)(n^(2)(1^(3)+2^(3)+......+n^(3)))/((1^(2)+2^(2)+......+n^(2))^(2))

The value of lim_(n rarr oo) (1 + 2^(4) + 3^(4) +…...+n^(4))/(n^(5)) - lim_(n rarr oo) (1 + 2^(3) + 3^(3) +…...+n^(3))/(n^(5)) is :

lim_(n rarr oo)(3^(n+1)+2^(n+2))/(3^(n-1)+2^(n-2)) =

lim_ (rarr oo) (1 ^ (3) + 2 ^ (3) ++ n ^ (3)) / ((n-1) ^ (4))