Home
Class 11
MATHS
" If "xy+yz+zx=1," prove that "(x)/(1-x^...

" If "xy+yz+zx=1," prove that "(x)/(1-x^(2))+(y)/(1-y^(2))+(z)/(1-z^(2))=(4xyz)/((1-x^(2))(1-y^(2))(1-z^(2)))

Promotional Banner

Similar Questions

Explore conceptually related problems

If xy+yz+xz=1, then prove that (x)/(1-x^(2))+(y)/(1-y^(2))+(z)/(1-z^(2))=(4xyz)/((1-x^(2))(1-y^(2))(1-z^(2)))

If xy+yz+zx=1 show that (x)/(1-x^(2))+(y)/(1-y^(2))+(z)/(1-z^(2))=(4xyz)/((1-x^(2))(1-y^(2))(1-z^(2)))

If xy + yz + zx = 1 , show that x/(1-x^(2)) +y/(1-y^(2)) + z/(1-z^(2))= (4xyz)/((1-x^(2))(1-y^(2)) (1-z^(2)))

If xy + yz + zx = 1 , show that x/(1-x^(2)) +y/(1-y^(2)) + z/(1-z^(2))= 4xyz/((1-x^(2))(1-y^(2)) (1-z^(2)))

If x+y+z=xyz prove that (2x)/(1-x^(2))+(2y)/(1-y^(2))+(2z)/(1-z^(2))=(2x)/(1-x^(2))(2y)/(1-y^(2))(2z)/(1-z^(2))

If x+y+z=xyz prove that (2x)/(1-x^(2))+(2y)/(1-y^(2))+(2z)/(1-z^(2))=(2x)/(1-x^(2))(2y)/(1-y^(2))(2z)/(1-z^(2)) .

If x+y+z=xyz , prove that x/(1-x^2)+ y/(1-y^2)+z/(1-z^2) =(4xyz)/((1-x^2)(1-y^2)(1-z^2))

If xy+yz+zx=1, " then " (x)/( 1+x^(2))+(y)/(1+y^2)+(z)/(1+z^(2))=

If x+y+z=xyz , prove by trignometry that: (2x)/(1-x^(2))+(2y)/(1-y^(2))+(2z)/(1-z^(2))=(2x)/(1-x^(2)).(2y)/(1-y^(2)).(2z)/(1-z^(2))