Home
Class 11
MATHS
Prove that sin 3x + sin^3(2pi/3+x) + sin...

Prove that `sin 3x + sin^3(2pi/3+x) + sin^3(4pi/3+x) = -3/4 sin3x`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: sin^3A+sin^3((2pi)/3+A)+sin^3((4pi)/3+A)=-3/4sin3Adot

Prove that: sin3x=3sinx-4sin^3x

Prove that : sin3x=3sinx-4sin^(3)x

Prove that : sin^-1 x + sin^-1 2x = pi/3

Prove that 4 sin theta sin(pi/3 + theta) sin (pi/3-theta) = sin 3 theta

Prove that sin alpha+sin(alpha+2pi/3)+sin(alpha+4pi/3)=0

Prove that, sin^(3)A+sin^(3)((2pi)/(3)+A)+sin^(3)((4pi)/(3)+A)=-(3)/(4)sin3A

sin^(3)x +sin^(3)(x-(2pi)/3) +sin^(3)(x+(2pi)/3)=0

Prove that: sin 3x + sin 2x - sin x = 4 sin x cos x/2 cos (3x)/2

Prove that: sin^(3)A+sin^(3)((2 pi)/(3)+A)+sin^(3)((4 pi)/(3)+A)=-(3)/(4)sin3A