Home
Class 11
MATHS
[" Theorem "2" For any positive integer ...

[" Theorem "2" For any positive integer "n" ,"],[qquad lim_(x rarr a)(x^(n)-a^(n))/(x-a)=na^(n-1)]

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr2)((1+x)^(n)-3^(n))/(x-2)=n*3^(n-1)

lim_ (x rarr a) (x ^ (n) -a ^ (n)) / (xa) = n * a ^ (n-1)

For any positive integer lim_(x rarr a)(x^(h)-a^(n))/(x-a)=na^(n-1)

For any positive integer n, lim_(xtoa)(x^(n)-a^(n))/(x-a)=na^(n-1)

lim_(n rarr oo)(1+(x)/(n))^(n)

find n in N, if lim_(x rarr2)(x^(n)-2^(n))/(x-2)=80

lim_(x rarr oo) (1+2/n)^(2n)=

Find the positive integer n so that lim_(xto3)(x^(n)-3^(n))/(x-3)=27

lim_ (n rarr oo) (x ^ (n)) / (n!)