Home
Class 10
MATHS
If the point P(x, y) is equidistant from...

If the point P(x, y) is equidistant from the points A(a + b, b-a) and B(a-b, a + b). Prove that bx = ay.

Promotional Banner

Similar Questions

Explore conceptually related problems

(i) If the point (x, y) is equidistant from the points (a+b, b-a) and (a-b, a+b), prove that bx = ay. (ii) If the distances of P(x, y) from A(5, 1) and B(-1, 5) are equal then prove that 3x =2y.

If the point (x, y) is equidistant from the points (a+b, b-a) and (a-b, a+b), then prove that bx=ay.

If the point (x , y) is equidistant from the points (a+b , b-a) and (a-b , a+b) , prove that b x=a y

If the point (x , y) is equidistant from the points (a+b , b-a) and (a-b , a+b) , prove that b x=a ydot

If the point (x , y) is equidistant from the points (a+b , b-a) and (a-b , a+b) , prove that b x=a ydot

If the point P(x, y) be equidistant from the points A(a+b, a-b) and B(a-b, a+b) then

If the point P(x, y) be equidistant from the points A(a+b, a-b) and B(a-b, a+b) then

If the point P(x,y) be equidistant from the points A(a+b,b-a) and B(a-b,a+b), then prove that bx=ay

If the point P(x,y) be equidistant from the points A(a+b,b-a) and B(a-b,a+b), then prove that bx=ay