Home
Class 11
MATHS
I=int(e^(x)(1+x))/(sin^(2)(x*e^(x)))dx...

I=int(e^(x)(1+x))/(sin^(2)(x*e^(x)))dx

Promotional Banner

Similar Questions

Explore conceptually related problems

int(e^(x)(1+x))/(sin^(2)(xe^(x)))dx

int (e^(x) (1+x))/(sin^(2)(xe^(x))) dx =

Evaluate: (i) int(sin sqrt(x))/(sqrt(x))dx( ii) int((x+1)e^(x))/(sin^(2)(xe^(x)))dx

int ((1+x)e^(x))/(sin^(2)(x e^(x)))dx=

int(e^(x))/(sin^(2)(e^(x)))dx=

Find int(e^x(1+x))/(sin^2(x e^x))dx

I=int(e^(2x)-1)/(e^(2x))dx

int (e^(x))/((e^(x)+2)(e^(x)-1))dx=

int(e^(x))/((e^(x)-1)(e^(x)+2))dx=

Evaluate the following: (i) int(sec^(2)x)/(3+tanx)dx " (ii) " int(e^(x)-e^(-x))/(e^(x)+e^(-x))dx (iii) int(1-tanx)/(1+tanx)dx " (iv) " int(1)/(1+e^(-x))dx