Home
Class 12
MATHS
lim(x->0)(1+(log(cos(x/2))cosx)^2)^2...

`lim_(x->0)(1+(log_(cos(x/2))cosx)^2)^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)log_(cos(x/2))cos x=

Evaluate: ("Lim")_(x->0)((log)_(secx/2)(cosx))/((log)_(secx)(cos(x//2))) 1 (b) 16 (c) 4 (d) 2

lim_(x rarr0)((log_(sec(x/2))cos x)/(log_(sec x)cos((x)/(2))))=

lim_(x rarr0)(log(1-(x)/(2)))/(x)

lim_(x rarr 0) (log_(sec x//2) cos x)/(log_(sec x)cos x//2) is equal to :

lim_(xto0) ((cos x)^(1//2)-(cosx)^(1//3))/(sin^2x) is

Evaluate: ("Lim")_(x->0)(1-cosx cos2x cos3x)/(x^2)

(lim)_(x->0)(cos2x-1)/(cosx-1)