Home
Class 12
MATHS
[" If "|z|=1" and "z!=+-1" ,then all the...

[" If "|z|=1" and "z!=+-1" ,then all the values of "(L)/(1-z^(2))" lie on "],[[" (A) a line not passing through the origin ",(B)|z|=sqrt(2)],[" (C) the X-axis "," (D) the Y-axis "],[" Number of complex number "z" satisfying "z^(3)=bar(z)," is "],[" (A) "1," (B) "2," (C) "4]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z|=1 and z ne pm 1 , then all the values of (z)/(1-z^(2)) lie on

If |z|=1 and z!=+-1, then all the values of z/(1-z^2) lie on

If |z|=1 and z!=1, then all the values of z/(1-z^2) lie on

If |z|=1andz!=+-1, then all the values of (z)/(1-z^(2)) lie on (a)a line not passing through the origin (b) |z|=sqrt(2)( c)the x -axis (d) the y- axis

If absz=1 and z ne+-1 then all the values of z/(1-z^2) lie on

If |z|=1a n dz!=+-1, then all the values of z/(1-z^2) lie on (a)a line not passing through the origin (b) |z|=sqrt(2) (c)the x-axis (d) the y-axis

If |z|=1a n dz!=+-1, then all the values of z/(1-z^2) lie on (a)a line not passing through the origin (b) |z|=sqrt(2) (c)the x-axis (d) the y-axis

All the roots of (z + 1)^(4) = z^(4) lie on

If |z - 1| = |z + 1| = |z - 2i|, then value of |z| is