Home
Class 12
MATHS
If range of f(x) = [1/ln(x^2+e)] + [1/sq...

If range of f(x) = `[1/ln(x^2+e)] + [1/sqrt(1+x^2)]` is set A, then

Promotional Banner

Similar Questions

Explore conceptually related problems

Range of f(x)=[1/(log(x^(2)+e))]+1/sqrt(1+x^(2)), where [*] denotes greatest integer function, is

Range of f(x)=[1/(log(x^(2)+e))]+1/sqrt(1+x^(2)), where [*] denotes greatest integer function, is

Range of f(x)=[1/(log(x^(2)+e))]+1/sqrt(1+x^(2)), where [*] denotes greatest integer function, is

Range of f(x)=[1/(log(x^(2)+e))]+1/sqrt(1+x^(2)), where [*] denotes greatest integer function, is

Range of the function f(x)=log_(e)sqrt(4-x^(2)) is

Range of f(x) =sin^-1(sqrt(x^2+x+1)) is

If f(x) =ln ((x^2 + e)/(x^2 + 1)) , then range of f(x) is

Find the domain of f(x) = log (e^(x) - x) + (1)/(sqrt(5[x] - [x]^(2) - 6))

Find the domain of f(x) = log (e^(x) - x) + (1)/(sqrt(5[x] - [x]^(2) - 6))