Home
Class 11
MATHS
If Logx 2 + Log(x^2) 2 > 1 then x lies...

If ` Log_x 2 + Log_(x^2) 2 > 1` then x lies

Promotional Banner

Similar Questions

Explore conceptually related problems

If x satisfies log_(S)(2x+3) lt log_(s)7 , then x lies in:

If 9^("log"3("log"_(2) x)) = "log"_(2)x - ("log"_(2)x)^(2) + 1, then x =

If 9^("log"_3("log"_(2) x)) = "log"_(2)x - ("log"_(2)x)^(2) + 1, then x =

If log_(2)[log_(3)(log_(2)x)]=1 , then x is equal to

If log_(x)(log_(2)x)*log_(2)x=3, then x is a ( an )

If log_((1)/(sqrt(2)))(x-1)>2, then x lies is the interval

If log_(0.5)log_(5)(x^(2)-4)>log_(0.5)1, then' x' lies in the interval

If (log_2(4x^2-x-1))/(log_2(x^2+1))gt1 , then x lies in the interval

log_(0.5)log_5(x^2-4)gtlog_(0.5)1 , then 'x' lies in the interval