Home
Class 11
MATHS
x^(logsqrtx 2x) = 4...

`x^(log_sqrtx 2x) = 4`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the real value of 'x' satisfying the equation x ^(0.5 log_(sqrtx) (x^2-x) = 3 ^ (log_9 4

Solve 1/4 x ^(log_(2)sqrtx)=(2*x^(log_(2)x))^(1/4).

Solve 1/4 x ^(log_(2)sqrtx)=(2*x^(log_(2)x))^(1/4).

If log_(sqrtx) 0.25= 4 then the value of x is ………………. .

If "log"_(sqrtx) 0.25 =4 then the value of x is .......... .

log_(sqrtx)sqrtx=?

the number of roots of the equation log_(3sqrtx) x + log_(3x) (sqrtx) =0 is

If (x -1)/( sqrtx +1) = 4 + (sqrtx - 1 )/(2) find x

(log_x2)(log_(2x)2)=log_(4x)2 n(logx 2)(log2x 2) = log4x2 is