Home
Class 11
MATHS
Solve for x. x^(log10 x +2)=10^(l...

Solve for `x`. `x^(log_10 x +2)=10^(log_10 x +2)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve for x. log_(0.1) sin 2x +log_10 cos x = log_10 7 .

Solve for x : (i) log_(10) (x - 10) = 1 (ii) log (x^(2) - 21) = 2 (iii) log(x - 2) + log(x + 2) = log 5 (iv) log(x + 5) + log(x - 5) = 4 log 2 + 2 log 3

solve for x log_(2)(9-2^(x))=10^(log_(10)(3-x))

Solve for x : log_(10)x = -2 .

Solve for x:x+(log)_(10)(1+2^(x))=x log_(10)5+log_(10)6

Solve for x : x+(log)_(10)(1+2^x)=x(dot(log)_(10)5+log_(10)6)

Solve for x, (a) (log_(10)(x-3))/(log_(10)(x^(2)-21))=(1)/(2),(b)log(log x)+log(log x^(3)-2)=0; where base of log is 10 everywhere.

Solve the following equation. 4^(log_10x+1)-6^(log_10x)-2.3^(log_10x^2+2)=0