Home
Class 11
MATHS
The positive integer value of n >3 satis...

The positive integer value of `n >3` satisfying the equation `1/(sin(pi/n))=1/(sin((2pi)/n))+1/(sin((3pi)/n))i s`

Promotional Banner

Similar Questions

Explore conceptually related problems

The positive integral value of n gt 3 satisfying the equation 1/(sin(pi/n))=1/(sin(2pi)/n) =1/(sin(3pi)/n) is

The positive integer value of n>3 satisfying the equation (1)/(sin((pi)/(n)))=(1)/(sin((2 pi)/(n)))+(1)/(sin((3 pi)/(n)))is

The positive integer value of n gt 3 satisfying the equation (1)/(sin((pi)/(n)))=(1)/(sin((2pi)/(n)))+(1)/(sin((3pi)/(n))) is

The positive integer value of n gt 3 satisfying the equation (1)/( sin ((pi )/(n)) ) = (1)/( sin ((2pi)/(n ))) + (1)/( sin ((3pi)/( n ))) is

Evaluate sin((pi)/(n))+sin((3 pi)/(n))+sin((5 pi)/(n))+ to n terms.

The smallest positive integral value of ' n ' such that [(1+sin (pi)/(8)+i cos (pi)/(8))(1+sin (pi)/(8)-i cos (pi)/(8))]^(n) is purely imaginary is

The smallest positive integral value of n such that [(1+"sin"pi/8+i"cos"(pi)/8)/(1+"sin"(pi)/8-i"cos"(pi)/8)]^(n) is purely imaginary is n=

Find sin( (pi)/n)+sin ((3pi)/n)+sin ((5pi)/n)+…….. to n terms

Show that sin(pi/n)+sin (3pi/n)+sin (5pi/n)+….n terms=0