Home
Class 11
MATHS
Prove that ((2n+1)!)/(n!)=2^n[1.3.5........

Prove that `((2n+1)!)/(n!)=2^n[1.3.5.....(2n-1).(2n+1)]`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: :((2n)!)/(n!)={1.3.5...(2n-1)}2^(n)

Prove that (2n!)/(n!)={1.3.5.....(2n-1)}2^n

Prove that: ((2n)!)/(n !)={1. 3. 5..... (2n-1)}2^ndot

Prove that .^(2n)P_(n)={1.3.5.....(2n-1)}.2n

Prove that: ((2n)!)/(n !)={1. 3. 5 (2n-1)}2^ndot

Prove that: ((2n)!)/(n !)={1. 3. 5 (2n-1)}2^ndot

Prove that: ((2n)!)/(n !)={1. 3. 5 (2n-1)}2^ndot

Prove that: ((2n)!)/(n !)={1. 3. 5 (2n-1)}2^ndot

Prove that .^(2n)C_(n)=(2^(n)xx[1*3*5...(2n-1)])/(n !) .

Prove that: :2^(n)C_(n)=(2^(n)[1.3.5(2n-1)])/(n!)