Home
Class 12
MATHS
The radius of the circle r^(2)-2sqrt(2r)...

The radius of the circle `r^(2)-2sqrt(2r) (cos theta + sin theta)-5=0`, is

Promotional Banner

Similar Questions

Explore conceptually related problems

Radius of the circle x^(2)+y^(2)+2x cos theta+2y sin theta-8=0, is

The radius of the circle r = sqrt(3) sin theta + cos theta is

The radius of the circle r = 12 cos theta + 5 sin theta is

The centre of the circle r^(2) - 4r (cos theta + sin theta) - 4 = 0 in cartesian coordinates is

Radius of the circle x^(2)+y^(2)+2x cos theta+2y sin theta-8=0 is 12 . 33.2sqrt(3)4.sqrt(10)5.2

The centre of the circle,r^(2)=2-4r cos theta+6r sin theta is

The centre, radius of the circle r^(2) - 8 r cos (theta - (pi)/(3) ) + 12 =0 is

The radius of the circle with the polar equation r^(2) - 8r (sqrt(3) cos theta + sin theta) + 15 = 0 is

Find the radius of the circle with the polar equation r^(2)-8r(sqrt(3)cos theta+sin theta+15=0