Home
Class 11
MATHS
For |z-1=1,itan((arg(z-1))/2)+2/z is...

For `|z-1=1`,`itan((arg(z-1))/2)+2/z` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let z be a non-real complex number lying on |z|=1, prove that z=(1+itan((arg(z))/2))/(1-itan((arg(z))/(2))) (where i=sqrt(-1).)

Let z be a non-real complex number lying on |z|=1, prove that z=(1+itan((arg(z))/2))/(1-itan((arg(z))/(2))) (where i=sqrt(-1).)

Let z be a non-real complex number lying on |z|=1, prove that z=(1+itan((arg(z))/2))/(1-itan((arg(z))/(2))) (where i=sqrt(-1).)

Let z be a non-real complex number lying on |z|=1, prove that z=(1+itan((arg(z))/2))/(1-itan((arg(z))/(2))) (where i=sqrt(-1).)

Given that |z-1|=1, where z is a point on the argand planne , show that (z-2)/(z)=itan (arg z), where i=sqrt(-1).

Given that |z-1|=1, where z is a point on the argand planne , show that (z-2)/(z)=itan (arg z), where i=sqrt(-1).

Let | z_ (1) | = | z_ (2) | and arg (z_ (1)) + arg (z_ (2)) = (pi) / (2) then

If |z|=1 and z ne +- 1 , then one of the possible values of arg(z)- arg (z+1)- arg (z-1) , is