Home
Class 12
MATHS
show that lim(x->1)[2x+3]=5...

show that `lim_(x->1)[2x+3]=5`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that : lim_(x rarr1)(2x-1)=1

Show that lim_(x rarr1)(7-3x)=4

Show that lim_(x rarr2)[(1)/(x-2)-(1)/(x^(2)-3x+2)]=

Evaluate the following limits: Show that lim_(x to 0)((1)/(x^(2))-(1)/(sin^(2)x))=(-1)/(3)

Show that : lim_(xto0)(10^(x)-2^(x)-5^(x)+1)/(x^(2))=log_(e)2.log_(e)5

Evaluate the following limits: Show that lim_(x to0) ((tanx)/(x))^(1//x^(2))=e^(1//3)

Evaluate the following limits: Show that lim_(x to 0) ([1^(2)x][2^(2)x]+.....+[n^(2)x])/(n^(3))=(x)/(3)

Show that lim_(x rarr0+)((2|x|)/(x)+x+1)=3

If f (a) = 2 , f'(a) = 1, g (a) = -1 and g'(a) = 2 , show that lim_(x to a)(g(x)f(a)-f(x)g(a))/(x-a) = 5

Show that lim_(x to 0)((1+x)^(9)-1)/((1+x)^(6)-1)=(3)/(2)