Home
Class 9
MATHS
AD,BE and CF are the medians of a Delta...

AD,BE and CF are the medians of a `Delta ABC`. Prove that `2(AD+BE+CF) < 3(AB+BC+CA) < 4(AD+BE+CF)`

Promotional Banner

Similar Questions

Explore conceptually related problems

In the right-angled ABC, /_A =1 right angle. BE and CF are two medians of Delta ABC . Prove that 4 ( BE^(2) + CF^(2)) =5 BC^(2)

If AD, BE and CF are the medians of a Delta ABC, then evaluate (AD^(2)+BE^(2)+CF^(2)): (BC^(2) +CA^(2) +AB^(2)).

If AD, BE and CF are the medians of a Delta ABC, then evaluate (AD^(2)+BE^(2)+CF^(2)): (BC^(2) +CA^(2) +AB^(2)).

If AD, BE and CF are the medians of a Delta ABC, then evaluate (AD^(2)+BE^(2)+CF^(2)): (BC^(2) +CA^(2) +AB^(2)).

If AD, BE and CF are the medians of DeltaABC , then the value of bar(BC).bar(AD)+bar(CA).bar(BE)+bar(AB).bar(CF)=

If AD, BE and CF be the median of a /_\ABC , prove that vec(AD)+vec(BE)+vec(CF) =0

If AD, BE and CF be the median of a /_\ABC , prove that vec(AD)+vec(BE)+vec(CF) =0

If AD, BE and CF are the medians of a triangle ABC, then AD^(2) + BE^(2) + CF^(2) :BC^(2)+CA^(2)+AB^(2) is equal to

If AD , BE and CF are medians of DeltaABC , then bar(AD) + bar(BE) + bar(CF) =