Home
Class 12
MATHS
The lim(x->oo) (Cot^(-1) (x^(-a) loga x)...

The `lim_(x->oo) (Cot^(-1) (x^(-a) log_a x))/(sec^(-1)(a^x log_x a)), agt0,a!=1` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->oo)cot^(-1)(x^(-a)log_a x)/(sec^(-1)(a^xlog_x a)),(a >1) is equal to (a) 2 (b) 1 (c) (log)_a2 (d) 0

lim_(x->oo)cot^(-1)(x^(-a)log_a x)/(sec^(-1)(a^xlog_x a)),(a >1) is equal to (a) 2 (b) 1 (c) (log)_a2 (d) 0

lim_(x->oo)cot^(-1)(x^(-a)log_a x)/(sec^(-1)(a^xlog_x a)),(a >1) is equal to (a) 2 (b) 1 (c) (log)_a2 (d) 0

underset(xtooo)lim(cot^(-1)(x^(-a)log_(a)x))/(sec^(-1)(a^(x)log_(x)a)),(agt1), is equal to

lim_(x rarr oo)(cot^(-1)(x^(-a)log_(a)x))/(sec^(-1)(a^(x)log_(x)a)),(a>1) is equal to (a)2(b)1(c)(log)_(a)2(d)0

lim_(x->oo) cos log((x-1)/(x))

lim_(x rarr oo)(log(1+x))/(x)

lim_(x rarr oo)(cot^(-1)(sqrt(x+1)-sqrt(x)))/(sec^(-1){((2x+1)/(x-1))^(x))) is equal to

lim_(x->0)(log(1+x+x^2)+"log"(1-x+x^2))/(secx-cosx)=