Home
Class 12
MATHS
If Dp=|[p,15,8] , [p^2,35,9] , [p^3,25,1...

If `D_p=|[p,15,8] , [p^2,35,9] , [p^3,25,10]|`then `D_1+D_2+D_3+D_4+D_5=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If D_p=|p 15 8p^2 35 9p^3 25 10|,\ t h e n\ D_1+D_2+D_3+D_5 is equal to- a. 0 b. 25 c. 625 d. none of these

If D_p=|p 15 8p^2 35 9p^3 25 10|,\ t h e n\ D_1+D_2+D_3+D_5 is equal to- a. 0 b. 25 c. 625 d. none of these

If D_r=|{:(r,15,8),(r^2,35,9),(r^3,25,10):}| , then the value of root(5)(((-1/100)sum_(r=1)^5D_r)-37) is equal to

If D_r=|{:(r,15,8),(r^2,35,9),(r^3,25,10):}| , then the value of root(5)(((-1/100)sum_(r=1)^5D_r)-37) is equal to

If D_1, D_2, D_3, ..... D_1000 are 1000 doors and P_1, P_2, P_3, ..... P_1000 are 1000 persons. Initially all doorsare closed. Changing the status of doors means closing the door if it is open or opening it if it is closed. P_1 changes the status of all doors. Then P_2 changes the status of D_2, D_4, D_6, .... D_1000 (doors having numbers which are multiples of 2). Then P_3 ; changes the status of D_3, D_6, D_9, .....D_999 (doors having number which are multiples of 3) and this process is continued till P_1000 changes the status of D_1000 , then the doors which are finally open is/are

If P=[[1,4],[ 2, 3]] , then P^5-4P^4-7P^3+11 P^2 is equal to (A) P+10I (B) P+5I (C) 2P+15I (D) P=5I

If P (1,-3), Q ( 2,-5), R ( -4,7) then find d(P,Q) d(P,R)

If P = [(d_(1),0,0),(0, d_(2),0),(0,0,d_(3))] then Adjoint (P) is equal to

If points A(5,\ p),\ \ B(1,\ 5),\ \ C(2,\ 1) and D(6,\ 2) form a square A B C D , then p= (a) 7 (b) 3 (c) 6 (d) 8

If points A(5, p), B(1, 5), C(2, 1) and D(6, 2) form a square A B C D , then p= (a) 7 (b) 3 (c) 6 (d) 8