Home
Class 10
MATHS
Let a,b,c be the sides of a triangle. No...

Let `a,b,c` be the sides of a triangle. No two of them are equal and `lambda in R` If the roots of the equation `x^2+2(a+b+c)x+3lambda(ab+bc+ca)=0` are real, then (a) `lambda < 4/3` (b) `lambda > 5/3` (c) `lambda in (1/5,5/3)` (d) `lambda in (4/3,5/3)`

A

`lamda lt 4/3`

B

`lamda lt 5/3.`

C

`l epsilon(1/3,5/3)`

D

`lamda epsilon (4/3,5/3)`

Text Solution

Verified by Experts

`Dge0`
`4(a+b+c)^(2)-12lamda(ab+bc+ca)ge0`
`(a^(2)+b^(2)+c^(2))-(3lamda-2)(ab+bc+ca)ge0`
`:.(3lamda-2)le((a^(2)+b^(2)+c^(2)))/((ab+bc+ca))`
Since `|a-b|ltc`
`impliesa^(2)+b^(2)-2abltc^(2)`……i
`|b-c|lta`
`impliesb^(2)+c^(2)-2bclta^(2)`.......ii
`|c-a|ltb`
`impliesc^(2)+a^(2)-2caltb^(2)`..........iii
From Eqs i, ii and iii we get
`(a^(2)+b^(2)+c^(2))/(ab+bc+ca)lt2`............iv
FromEqs i and iv we get
`3lamda-2lt2implieslamdalt4/3`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let a,b,c be the sides of a triangle no two of them are equal and lambda in R if the roots of the equation x^(2)+2(a+b+c)+3lambda (ab+bc+ca=0) are real then

Let a, b,c be sides of a triangle. No two of them are equal and lambda in R. If the roots of the equation x^(2) + 2 (a + b + c) x + 3 lambda (ab + bc + ca ) = 0 are real , then :

Let a ,b , c be the sides of a triangle, where a!=b!=c and lambda in R . If the roots of the equation x^2+2(a+b+c)x+3lambda(a b+b c+c a)=0 are real. Then a. lambda<4/3 b. lambda>5/3 c. lambda in (1/3,5/3) d. lambda in (4/3,5/3)

Let a ,b , c be the sides of a triangle, where a!=b!=c and lambda in R . If the roots of the equation x^2+2(a+b+c)x+3lambda(a b+b c+c a)=0 are real. Then a. lambda<4/3 b. lambda>5/3 c. lambda in (1/3,5/3) d. lambda in (4/3,5/3)

Let a,b,c be the sides of a triangle,where a!=b!=c and lambda in R. If the roots of the equation x^(2)+2(a+b+c)x+3 lambda(ab+bc+ca)=0 are real.Then a.lambda (5)/(3) c.lambda in((1)/(3),(5)/(3)) d.lambda in((4)/(3),(5)/(3))

If a,b,c, are the sides of a triangle ABC such that x^(2)-2(a+b+c)x+3 lambda(ab+bc+ca)=0 has real roots,then (a)lambda (5)/(3)(c)lambda in((4)/(3),(5)/(3)) (d) lambda in((1)/(3),(5)/(3))

For all lambda in R , The equation ax^2+ (b - lambda)x + (a-b-lambda)= 0, a != 0 has real roots. Then

If one root of the equation 3x^(2)-5x+lambda=0 is the reciprocal of the other, then the value of lambda is

If (a - lambda b) . (b - 2c) xx (c + 3a) = 0 then lambda =