Home
Class 11
MATHS
The minimum value of the quantity ((a^2+...

The minimum value of the quantity `((a^2+3a+1)(b^2+4b+1)(c^2+5c+1))/(abc)`

Promotional Banner

Similar Questions

Explore conceptually related problems

he minimum value of the quantity ((a^2 +3a+1)(b^2 +4b +1)(c^2 +4c+1))/(abc), where a, b and c are positive integers, is :- (A) 125 (B) 210 (C) 60 (D) 23

The minimum value of ((a^2 +3a+1)(b^2+3b + 1)(c^2+ 3c+ 1))/(3abc) The minimum value of , where a, b, c in R is

The minimum value of ((a^2 +3a+1)(b^2+3b + 1)(c^2+ 3c+ 1))/(abc) The minimum value of , where a, b, c in R^+ is

The minimum value of ((a^2 +3a+1)(b^2+3b + 1)(c^2+ 3c+ 1))/(abc) The minimum value of , where a, b, c in R^+ is

The minimum value of ((a^2 +3a+1)(b^2+3b + 1)(c^2+ 3c+ 1))/(abc) The minimum value of , where a, b, c in R^+ is

The minimum value of ((a^(2)+3a+1)(b^(2)+3b+1)(c^(2)3c+1))/(abc) The minimum value of,where a,b,c in R is

The minimum value of ((a^(2)+3a+1)(b^(2)+3b+1)(c^(2)3c+1))/(abc) The minimum value of,where a,b,c in R is

If a ,b ,c are non-zero real numbers, then find the minimum value of the expression (((a^4+ 3a^2+1)(b^4+5b^2+1)(c^4+7c^2+1))/(a^2b^2c^2)) which is not divisible by prime number.