Home
Class 11
MATHS
" 13.If "csc A+sec A=csc B+sec B," prove...

" 13.If "csc A+sec A=csc B+sec B," prove that: "tan A tan B=cot(A+B)/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Ifcos ecA+sec A=cos ecB+sec B, prove that tan A tan B=(cot(A+B))/(2)

If cosec A + sec A = cosec B + sec B , prove that tan A tan B = cot( A+ B)/ 2

If cosec A + sec A = cosec B + sec B then prove that tan A tan B = cot "" (A + B)/(2) .

If "cosec"A + secA = "cosec"B + sec B prove that "tan"(A+B)/2 = cot A cot B

If sec A - "cosec" A= "cosec" B - secB, "show that" tanA tan B = "tan"(A+B)/2

If "cosec" 2A+ "cosec"2B+"cosec"2C=0 , prove that tan A+ tan B+ tan C+ cot A+ cot B+cot C=0

If A+B = 90^@ , show that tan A + tan B = (cosec^2B)/sqrt(cosec^2B-1)

If A+B=90 then prove that sqrt((tan A tan B+tan A cot B)/(sin A sec B))=sec A

( cosec A - sin A ) (sec A - cos A ) = ( 1 ) /( tan A + cot A )

(i) If cosec A= sec 34 degree, then find A (ii) If tan B= cot 47 degree, then find B