Home
Class 12
MATHS
f(i)f(x)=x^(2)" at "x=0...

f(i)f(x)=x^(2)" at "x=0

Promotional Banner

Similar Questions

Explore conceptually related problems

If : f(x)=e^(x^2)," then: "f'(x)-2x*f(x)+(1)/(3)*f(0)-f'(0)=

If f((1)/(x))+x^(2)f(x)=0,x>0 and I=int_(1/x)^(x)f(t)dt,(1)/(2)<=x<=2, then I is equal to

If a function 'f' satisfies the relation f(x)f^('')(x)-f(x)f^(')(x) -f^(')(x)^(2)=0 AA x in R and f(0)=1=f^(')(0) . Then find f(x) .

If a function 'f' satisfies the relation f(x)f^('')(x)-f(x)f^(')(x) -f^(')(x)^(2)=0 AA x in R and f(0)=1=f^(')(0) . Then find f(x) .

If a function 'f' satisfies the relation f(x)f^('')(x)-f(x)f^(')(x) -f^(')(x)^(2)=0 AA x in R and f(0)=1=f^(')(0) . Then find f(x) .

At x=af^(I)(x)=0,f^(II)(a)=0 also f^(III)(a)=0 and f^(IV)=+ve, then (i)f(x) is minima at x=a (i) f(x) is maxima at x=a (iii) f(x) has neither max nor min at x=a (iv) none of these

If f(0)=2,f'(x)=f(x),phi(x)=x+f(x)" then "int_(0)^(1)f(x)phi(x)dx is

If f(0)=2,f'(x)=f(x),phi(x)=x+f(x)" then "int_(0)^(1)f(x)phi(x)dx is

If a function satisfies the relation f(x) f''(x)-f(x)f'(x)=(f'(x))^(2) AA x in R and f(0)=f'(0)=1, then The value of lim_(x to -oo) f(x) is

If a function satisfies the relation f(x) f''(x)-f(x)f'(x)=(f'(x))^(2) AA x in R and f(0)=f'(0)=1, then The value of lim_(x to -oo) f(x) is