Home
Class 10
MATHS
Let P(x) and Q(x) be two polynomials. If...

Let P(x) and Q(x) be two polynomials. If `f(x) = P(x^4) + xQ(x^4)` is divisible by `x^2 + 1`, then

Promotional Banner

Similar Questions

Explore conceptually related problems

Let P(x) and Q(x) be two polynomials.Suppose that f(x) = P(x^3) + x Q(x^3) is divisible by x^2 + x+1, then (a) P(x) is divisible by (x-1),but Q(x) is not divisible by x -1 (b) Q(x) is divisible by (x-1), but P(x) is not divisible by x-1 (c) Both P(x) and Q(x) are divisible by x-1 (d) f(x) is divisible by x-1

Let P(x) and Q(x) be two polynomials.Suppose that f(x)=P(x^(3))+xQ(x^(3)) is divisible by x^(2)+x+1, then

If the polynomial p(x)=x^(3)+6x^(2)+4x+k is divisible by (x + 2), then k =

Let g(x) and h(x) are two polynomials such that the polynomial P(x) =g(x^(3))+xh(x^(3)) is divisible by x^(2)+x+1 , then which one of the following is not true?

Let g(x) and h(x) are two polynomials such that the polynomial P(x) =g(x^(3))+xh(x^(3)) is divisible by x^(2)+x+1 , then which one of the following is not true?

If f(x) and g(x) are two polynomials such that the polynomial P(x)=f(x^(3))+g(x^(3)) is divisible by x^(2)+x+1 , then P(1) is equal to ........

Let P and Q be polynomials. Find Lim_(x->oo) (P(x))/(Q(x)) if the degree of P is