Home
Class 12
MATHS
Cot^(-1)[(sqrt(1+sin x)+sqrt(1-sin x))/(...

Cot^(-1)[(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))]=(x)/(2),x in(0,(pi)/(4))

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following: cot^(-1)[(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))]=(x)/(2),x(0,(pi)/(4))

Prove that cot^(-1)((sqrt(1+sin)+sqrt(1-sin x))/(1sqrt(1+sin)-sqrt(1-sin x)))=(x)/(2);x in(0,(pi)/(4))

Prove the following: cot^(-1)((sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x)))=(x)/(2),x epsilon(0,(pi)/(4))

Prove that cot^(-1) ((sqrt(1+sin x) +sqrt(1-sin x))/(sqrt(1+sin x) -sqrt(1-sinx)))=(x)/(2), x in (0, (pi)/(4)) .

Prove that : cot^(-1)(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))=(x)/(2),0

Prove that : cot^-1[(sqrt(1+sin x) + sqrt(1-sin x))/(sqrt1+sin x + sqrt(1-sin x))] = x/2, x in (0, pi/4)

show that , cot ^(-1) {(sqrt(1+sin x)+sqrt(1- sin x))/( sqrt(1+sin x)- sqrt(1-sin x))}=(x)/(2),0 lt x lt (pi)/(2)

If y=cot^(-1)[(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))](0

Differentiate w.r.t.x the function in Exercises 1 to 11. cot^(-1)[(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))],0 lt x lt (pi)/(2) .