Home
Class 11
MATHS
" (C) "lim(x rarr oo)((ln x-1)e)/(x-e)" ...

" (C) "lim_(x rarr oo)((ln x-1)e)/(x-e)" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_ (x rarr e) (ln x-1) / (xe)

lim_(x rarr oo)(log(1+x))/(x)

Lim_(x rarre)(log x-1)/(x-e)=

lim_(x rarr-oo)e^(x)

lim_(x rarr oo)(e^((1)/(x))-1))

lim_(x rarr oo)((log x)/(x))^(1/x)

lim_(x rarr oo)x(((x)/(x+1))^(x)-(1)/(e)) is equal to (A) (-1)/(2e) (B) (1)/(2e) (C) (1)/(e) (D) oo

(lim_(x rarr oo)((1)/(e)-(x)/(1+x))^(x) is equal to (a)(e)/(1-e)(b)0(c)(e)/(e^(1-e))(d) does not exist

lim_(x rarr oo)e^(-x^(2))

lim_(x rarr oo)e^(-x^(2))