Home
Class 12
MATHS
" The integral "int(1+x-(1)/(x))e^(x+(1)...

" The integral "int(1+x-(1)/(x))e^(x+(1)/(x))dx=

Promotional Banner

Similar Questions

Explore conceptually related problems

Compute the integrals: int_((1)/(x))^(e)(1)/(x)sin(x-(1)/(x))dx

The value of the integral int_(-a)^(a)(e^(x))/(1+e^(x))dx is

The value of the integral int_(-a)^(a)(e^(x))/(1+e^(x))dx is

The integral int_(1)^(e){((x)/(e))^(2x)-((e)/(x))^(x)} "log"_(e)x dx is equal to

Evaluate the integrals int_(1)^(2)((1)/(x)-(1)/(2x^(2)))e^(2x)dx

The value of the integral int_(1)^(2)e^(x)(log_(e)x+(x+1)/(x))dx is

The value of the integral int_(1)^(2)e^(x)(log_(e)x+(x+1)/(x))dx is-

The value of the integral int_(-1)^(1){(x^(2015))/(e^(|x|)(x^(2) + cos x)) + (1)/(e^(|x|))} dx is equal to

The indefinite integral inte^(e^(x))((xe^(x).lnx+1)/(x))dx simplifies to (where, c is the constant of integration)