Home
Class 12
MATHS
" 1."C(1)+2C(2)+3C(3)+....+nC(n)=n2^(n-1...

" 1."C_(1)+2C_(2)+3C_(3)+....+nC_(n)=n2^(n-1)

Promotional Banner

Similar Questions

Explore conceptually related problems

If (1+x)^(n)=sum_(r=0)^(n)C_(r)x^(r) then prove that C_(1)+2C_(2)+3C_(3)+....+nC_(n)=n2^(n-1)

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+.....+C_(n)x^(n) then show : C_(1)+2.C_(2)+3.C_(3)+....+n.C_(n)=n.2^(n-1)

If (1+x)^(n) = overset(n)underset(r=0)Sigma C_(r)x^(r ) , then prove that C_(1)+2C_(2)+3C_(3)+…..+nC_(n)=n2^(n-1) .

If C_(0),C_(1),C_(2)…….,C_(n) are the combinatorial coefficient in the expansion of (1+x)^n, n, ne N , then prove that following C_(1)+2C_(2)+3C_(3)+..+n.C_(n)=n.2^(n-1) C_(0)+2C_(1)+3C_(2)+......+(n+1)C_(n)=(n+2)C_(n)=(n+2)2^(n-1) C_(0),+3C_(1)+5C_(2)+.....+(2n+1)C_n =(n+1)2^n (C_0+C_1)(C_1+C_2)(C_2+C_3)......(C_(n-1)+C_n)=(C_0.C_1.C_2....C_(n-1)(n+1)^n)/(n!) 1.C_0^2+3.C_1^2+....+ (2n+1)C_n^2=((n+1)(2n)!)/(n! n!)

If (1+x)^(n)=sum_(r=0)^(n)C_(r)x^(r), then prove that C_(1)+2c_(2)+3C_(1)+...+nC_(n)=n2^(n-1)...

Prove that (i) C_(1)+2C_(2)+3C_(3)+……+nC_(n)=n.2^(n-1) (ii) C_(0)+(C_(1)/(2)+(C_(2))/(3)+….+(C_(n))/(n+1)=(2^(n+1)-1)/(n+1)

Prove that (i) C_(1)+2C_(2)+3C_(3)+……+nC_(n)=n.2^(n+1) (ii) C_(0)+(C_(1)/(2)+(C_(2))/(3)+….+(C_(n))/(n+1)=(2^(n+1)-1)/(n+1)

Given that C_(1)+2C_(2)x+3C_(3)x^(2)+...+2nC_(2n)x^(2n-1)=2n(1+x)^(2n-1),whereC_(r)=(2n)!/[r!(2n-r)!];r=0,1,2 then prove that C_(1)^(2)-2C_(2)^(2)+3C_(3)^(2)-...-2nC_(2n)^(2)=(-1)^(n)nC_(n).

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+....+C_(n)x^(n) , then prove that : (i) C_(1)+2C_(2)+......+nC_(n)=n*2^(n-1) (ii) C_(1)-2C_(2)+......+(-1)^(n-1)nC_(n)=0