Home
Class 9
MATHS
x^(2)+kx+6=(x+2)(x+3)" for all "'x'," fi...

x^(2)+kx+6=(x+2)(x+3)" for all "'x'," find "k

Promotional Banner

Similar Questions

Explore conceptually related problems

For what value of k ,x^(2)+kx+6=(x+2)(x+3) for all x ?

If 3x^(4)+kx^(2)-8=(3x^(2)-2)(x^(2)+4) for all x then the value of k is

f(x)=x^(3)-(k-2)x^(2)+2x , for all x and if it is an odd function, find k.

Let f(x)=|(x^(2),kx,4+kx),(kx,4+kx),x^(2)),(4+kx),x^(2),kx)| If f(x) is positive for all x in R, the find the number of integral values in the range of k.

If the inequality (x^(2)-kx-2)/(x^(2)-3x+4)>-1 for every x in R and S is the sum of all integral values of k, If the inequalitythen find the value of S^(2)

If f(x)=x^(2)+kx+1 , for all x and if it is an even function, find k.

If x-3 is a factor of k^(2)x^(3) - kx^(2) + 3kx - k , find the value of k. (k ne 0) .

If the remainder on dividing x^(3) + 2x^(2) + kx + 3 by x - 3 is 21, find the quotient and the value of k. Hence find the zeros of the polynomial x^(3) + 2x^(2) + kx - 18 .

If f(x)=x^(2)+kx+1 for all x and f is an even function, find k,kinR .